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Ring-opening reaction of tetrahydrofuran takes place on penta(methyl)- and penta(n-butylphenyl)[60]ful-
lerenes in the presence of chlorotrimethylsilane giving penta(organo)fullerene hydroxybutyl derivatives,
C60R5(C4H8OH) (R = Me, nBuC6H4). The hydroxyl groups were further transformed into methacrylate and
norbornylcarbonyloxy groups via esterification with the corresponding acid chlorides. The methacrylate
derivative, penta(methyl)[60]fullerenylbutyl methacrylates was crystallographically characterized.

� 2009 Elsevier Ltd. All rights reserved.
Functionalized fullerene derivatives have found many promis-
ing applications in the areas of materials science and nanotechnol-
ogy because of their unique electrochemical and photophysical
properties.1 A wide variety of reactions have been utilized for func-
tionalization of fullerenes—cycloaddditions,2 nucleophilic addi-
tions,3 electrophilic substitution,4 radical reactions,5 and others.6

Diversification of these reactions enhances accessibility to func-
tionalized fullerenes. For instance, we have previously reported
organozinc-mediated addition of tetrahydrofuran (THF) to C60 giv-
ing tetrahydrofuranyl fullerene derivatives.7 We report herein that
an electrophilic ring-opening reaction of THF can selectively pro-
ceed with penta(organo)[60]fullerenes in the presence of Me3SiCl
to afford hydroxybutyl derivatives, C60R5(C4H8OH) (1a: R = Me;
1b: R = nBuC6H4). The alcohol products can be further elaborated
into a variety of new fullerene-containing methacrylate and nor-
bornene derivatives through esterification of the hydroxyl
moieties.

The hydroxybutyl derivatives 1a,b were obtained in excellent
yield, starting from C60 in a one-pot reaction (Scheme 1). Treat-
ment of C60 with 12 equiv of a methylcopper reagent afforded an
intermediate C60Me5

� (2a), to which was added in situ 5 equiv of
Me3SiCl to generate a ring-opening product C60Me5(C4H8OSiMe3)
(3a), followed by acid treatment to obtain 1a in 91% isolated over-
all yield.8,9 When an n-butylphenylcopper reagent was employed
in this reaction, the product 1b was obtained in similar yield
(92%) even via a bulky intermediate (2b). These reactions can be
carried out with ease. Purification of the products is also easily per-
formed with normal silica gel column chromatography, because
the products have polar hydroxyl groups. The compounds 1a,b
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are very stable and can be stored in air, while compounds 3a,b
gradually decomposed to 1 in air.

Optimization of the reaction conditions revealed that the use of
5 equiv of Me3SiCl was the most effective and convenient. We opti-
mized the conditions for the synthesis of 1b. The use of 1, 3, 5, and
10 equiv of Me3SiCl resulted in 65%, 77%, 92%, and 92% yield,
respectively. Me3SiBr (5 equiv) and Me3SiI (5 equiv) were investi-
gated in this reaction, and gave the product in 72% and 57% yield,
respectively. Note that trimethylsilyl bromide and iodide them-
selves can open the cyclic ethers to give, for example,
Br(CH2)4OSiMe3.10 We think that these alkyl halides are less reac-
tive than plausible active species, oxonium cations (see below).

The reaction was also performed with the use of a readily avail-
able protio compound C60Me5H (4) (Scheme 2). The ring-opening
product 3a was obtained in 88% yield by deprotonation of the
hydrogen atom of 4 with KH in THF, followed by addition of Me3-

SiCl in similar conditions. On this route, the use of KOtBu, instead of
KH, did not result in any product. This is because of t-butanol gen-
erated in this reaction. The t-butanol deactivates cationic species
such as Me3Si+ (see below),11 which is absolutely essential for this
ring-opening reaction of THF.

The mechanistic aspect of this reaction is discussed with forma-
tion of an oxonium compound and a following ring-opening reac-
tion (Scheme 3).12 A transmetalation reaction of the penta-addition
product anion 2 with Me3SiCl generates a Me3Si+ cation formally,11

which immediately forms the oxonium cation of THF. This oxo-
nium species undergoes an electrophilic13 ring-opening reaction
with the cyclopentadienyl anion of 2 to generate the siloxybutyl
product 3. The present reaction course is quite different from those
shown in the syntheses of CpSiMe3 and Cp*SiMe3 (Cp = C5H5;
Cp* = C5Me5).14 NaCp and KCp* react with Me3SiCl in THF to give
the silanes CpSiMe3 and Cp*SiMe3 simply via transmetalation reac-
tions. The cyclopentadienyl part of the penta(organo)[60]fullerene
is located on the concave cavity, which prevents formation of the
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Scheme 1. One-pot synthesis of the hydroxybutyl-penta(organo)[60]fullerenes from C60.
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Scheme 3. A proposed reaction mechanism for the ring-opening reaction.
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Scheme 2. Synthesis of the ring-opening product from C60Me5H.
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Scheme 4. Synthesis of methacrylate and norbornene derivatives.

Figure 1. Crystal structure of the fullerene-containing methacrylate 5. (a) An
ORTEP diagram with 30% probability level ellipsoids. (b) Side view of a CPK model.
(c) Top view of a CPK model.
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C60–Si bond. This effect probably gives the tendency to form C60R5
�

and Me3Si+.
The hydroxyl functionality in fullerene derivatives is of impor-

tance for building fullerene-based photoelectrochemically and bio-
logically active materials.15 Here we demonstrated the syntheses
of methacrylate and norbornene derivatives via esterification reac-
tions with acid chlorides (Scheme 4). Compounds 1a,b were trea-
ted with methacryloyl chloride in the presence of excess
triethylamine in dichloromethane to produce penta(org-
ano)[60]fullerenylbutyl methacrylates 5a,b in 71–72% yield.16 A
similar reaction with norbornylcarbonyl chloride yielded a nor-
bornene derivative 6. These products 5 and 6 are stable in air,
and can be purified by silica gel column chromatography. The
structure of the methacrylate derivative 5a was unambiguously
determined by single-crystal X-ray analysis (Fig. 1).17 Dark red sin-
gle crystals containing a 1:1 mixture of 5a and dichloromethane
were obtained by slow diffusion of ethanol into a dichloromethane
solution of 5a. A crystal packing view (Fig. 2) shows a honeycomb-
like porous structure, where solvent molecules and part of the
methacrylate moiety are located in the hollows. Polymerization18

of the methacrylate/norbornene parts would be not only interest-
ing but also challenging, because the fullerene part is known to
deactivate radical and anionic initiators by radical quenching and
the electrophilic properties of fullerenes.

In summary, we have found an efficient and selective ring-
opening reaction of THF attaching to the penta(organo)[60]fuller-
ene skeleton. Both pentamethyl and pentaaryl substrates were em-
ployed in this reaction to obtain hydroxybutyl derivatives. The
usefulness of the alcohol functionalities and the respectable total



Figure 2. Crystal packing view from C-axis. Oxygen and chlorine atoms are colored
red and green, respectively.

Y. Matsuo et al. / Tetrahedron Letters 50 (2009) 3411–3413 3413
yield from C60 are significant for further synthetic elaboration. Ful-
lerene derivatives bearing polymerizing units are potentially un-
ique monomers in materials science.
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